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Abstract— Mirror neuron system often refers to the brain
mechanism of establishing and use of the equivalence of
action observation and action execution. Mirror neurons were
originally found in monkeys; but, recent neuroimaging data
indicate that the adult human brain is endowed with a mirror
neuron system, containing mirror neurons and related circuits
for matching the observation and execution of actions. Exact
mechanism of the mirror system is far from known although
computational models have been proposed to explain certain
functions of the system in the past. In this paper, we propose a
mirror neuron system based on a novel computational system
called Conditional Neural Movement Primitives (CNMPs), and
report our preliminary findings. In the proposed system, the
visual data and motor signals generated during self-action are
fused together via CNMP learning, which allows sharing and
mirroring of the relevant information from the two domains.
After learning, the system can predict the full action trajectory
and visual scene together, given the partial observation of an
action, and generalize the knowledge it learned to different
scene configurations.

I. INTRODUCTION

Mirror neurons were originally found in macaque mon-
keys, in the ventral premotor cortex, area F5 [1] and later also
in the inferior parietal lobule [2]. There are F5 visuomotor
neurons that selectively discharge to the visual presenta-
tion of a given object, which also discharge selectively
during grasping of that object [3]. Recent neuroimaging
data indicate that the adult human brain is endowed with
a “mirror neuron system”, containing mirror neurons and
other neurons, for matching the observation and execution
of actions. Mirror neurons may serve action recognition in
monkeys as well as humans, whereas their putative role in
imitation and language may be realized in human but not in
monkey.

Computational methods were used to produce and explain
the known effects of mirror neurons in recent years (e.g.
[4]–[6]). In [7], a computational model was introduced to
explain the psychological findings which indicate that there
is a correlation between infant’s ability to predict others’
action goals and development of their own motor ability to
produce similar actions. Here, they transferred the sensori-
motor information which consists of visual signals, tactile
signals, and joint angles to a shared latent space by using
an auto-encoder architecture in order to replicate a mirror
neuron system that allows making action goal predictions.
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In this paper, we propose a system that learns a rep-
resentation that simultaneously encodes the actions of an
agent and its observations. This system self-interacts with the
objects around through the agent’s grasp and push actions,
and learns from self-observed image sequences and the motor
commands, i.e. joint angles, that generate the corresponding
image sequences. Our system demonstrates properties similar
area F5 neurons, including canonical neurons. Given the
object to be manipulated or the image of the manipulator
that interacts with the object the related action and the
corresponding motor program are generated.

Our system is based on a recent movement framework,
namely Conditional Neural Movement Primitives that are
typically used for Learning for Demonstration (LfD). LfD
[8] has been applied to various robotic learning problems
including object grasping and manipulation [9]–[13]. Among
others, learning methods that are based on dynamic systems
[14] and statistical modeling [15] have been popular in recent
years. Dynamic Movement Primitives (DMPs) [14] encode
the demonstrated trajectory as a set of differential equations,
and offers advantages such as one-shot learning of non-
linear movements, real-time stability and robustness under
perturbations with guarantees in reaching the goal state,
generalization of the movement for different goals, and linear
combination of parameters.

Specifically, in this paper, we propose a dual channel
CNMP that conditions the distribution of manipulation ac-
tions with desired images and produces a sequence of
predicted images and motor values together. We propose
that the images and the motor commands can share related
information between each other while training, thus, enhanc-
ing the learning procedure while simultaneously coupling the
information between these two domains, and constructing a
mirror-neuron-like system where the visual information by
itself can lead to the activation of the corresponding motor
commands.

The experiments that were performed with a simulated
robotic hand and a top-down camera showed that our system
is able to
• predict the full manipulation trajectory and images of

the scene at the same time, given an image of the start
of the movement as an observation,

• generalize the knowledge it learned in the training to
different scene configurations

after trained with a small interaction set of grasp and push
actions.



Fig. 1. Training and trajectory generation steps of Conditional Neural Movement Primitives. See Section II.A for details.

II. METHOD

In this section, first, we provide a summary of Conditional
Neural Movement Primitives that our system is based on. For
more detailed information and capabilities of CNMPs readers
are referred to our paper [16].

A. Background: Learning from Demonstration with CNMPs

CNMP is a learning from demonstration framework that
learns multi-modal temporal relationships of the trajectory
distributions shown by the experts. It can generate trajecto-
ries conditioned on the desired positions at any time step
or external parameters in the task or joint space. Fig. 1.
provides the general framework of CNMPs for an example
1D scenario. Fig. 1.1a shows the demonstration set, D. At
each training step a demonstration is sampled randomly from
the demonstration set. A changing number of observation
tuples and a target query tuple which consist of sensorimotor
data and corresponding time value are sampled from the
selected demonstration (Fig. 1.1b). Fig. 1.1c illustrates the
neural network architecture for the sampled observations.
If external task parameters (γ) are used, they are con-
catenated with observation tuples and target time value.
Each observation sample is passed through the parameter
sharing Encoder Network (E) and the corresponding latent
space representations (ri) are obtained. After applying an
averaging operation on the latent space representations, a
general representation (r) is formed. The produced general
representation and the target query time (tq) are given to
the Query Network (Q) as input and the Query Network
produces a mean and variance of a Gaussian distribution
which represent the distribution of sensorimotor values at
the target time step tq(Fig. 1.1d). Neural network parameters
(θ and φ ) of both Encoder and Query network are optimized

end-to-end with the loss function below using the stochastic
gradient descent algorithm:

L (θ ,φ) =− logP(SM(tq) | µq,softplus(σq)) (1)

where µq and σq are predicted distribution parameters for
target time-step tq, and SM(tq) is the ground truth sensorimo-
tor value at target time-step for the sampled demonstration
in that training iteration.

After the training is over, CNMP can produce trajecto-
ries conditioned on any starting, intermediate, and ending
position or other constraints such as online position or
sensor observations (Fig. 1.2). Condition positions are given
as observations and external constraints like online sensor
readings are given as task parameters (γ) to the model. In
order to generate a full trajectory, Query Network predicts
a mean and variance for all time steps, which are given
as target query time to the model. In the end, the desired
trajectory is obtained for the given conditions and it can
be given as an input to any robot controller to execute the
motion.

B. Proposed Method: Towards A Mirror Neuron System via
Dual Channel CNMPs

In this work, we propose a dual channel CNMP architec-
ture in order to be able to learn and mirror the visual and pro-
prioception information together while sharing information
between these two different domains. A dual channel CNMP
means that there are two separate CNMPs trained with a
shared representation latent space. This allows both CNMPs
to share related and important information between the net-
works while training, thus, mirroring the learned information
of the same timesteps. Figure 2 shows an example dual
channel CNMP where the above row is the image learning



Fig. 2. Proposed mirror neuron framework. Image and joint observations
are turned into their latent representations and merged into a shared latent
space in order to predict the image and joint positions given at another
target timestep.

CNMP channel, and the below row is the joint value learning
CNMP channel. Note that both general representations which
are obtained after aggregating the observations are mixed
into a single representation space before separated again into
two in order to predict the relevant image and joint values
respectively.

More specifically, we define our demonstration set as D
and a demonstration as D j = {(ti, Ii,Ji)}T

i=0 where ti is the
time, Ii is the image of the scene collected by the vision
sensor, and Ji is the joint data values of the robot at the ith
movement step. Figure 2 shows the general structure of the
proposed system. At every training step, an observation set
is sampled from a randomly selected demonstration D j. We
define the observation set as O= {(tsi , Isi ,Jsi)}n

i=1 ∈D j where
n is the random observation number of that iteration n ∈
[1,nmax] and si is the ith sampled timestep from the selected
demonstration. As seen in the figure, time information of
the observations is concatenated to the image as the fourth
layer. In order to merge the image and the joint information
of the two channels into one single representation, first,
the dimensions of the image data are reduced. Standard V-
shaped CNN architecture is used to reduce the dimensions
of the image into a vector. After reducing the dimensions,
image and joint representations are aggregated into their
general image and joint representations by using a mean
operator (A in the Figure 2). After obtaining the general
representations of the image and joint information separately,
both representations are concatenated all together with the
target time information and mixed into a shared latent space
after passed through a dense layer. At this point, a high-level
information that involves mixed information of the observed
images, observed joints, and the target time that is wanted
to be predicted is obtained through a single representation.
Finally, mixed representation is copied and separated to both
channels in order to predict image and joint position at the
target timestep. For both channels, the same loss function

defined in the CNMPs is used. Loss values are calculated
separately but back-propagated together in order to train the
neural network end-to-end and all together.

After the training, the system can be queried by any
visual observation that is desired to be satisfied. According
to the representations that are encoded through the given
observations, dual CNMP can produce full trajectory image
and joint trajectory prediction together at the same time
because of the information mirroring during the training
between the image and joint prediction channel.

III. EXPERIMENTAL RESULTS

To show the capabilities of our system, we designed an
environment where the robot’s actions can be foreseen by the
visual observations taken during the start of the movement
execution. A simulated experiment environment using V-
REP is built. The setup consists of a UR10 robot equipped
with a 3 finger gripper, an object on a table, and a vision
sensor that collects information about the scene during the
movement. Two motions, pushing and grasping, are defined
as the movement primitives and data is collected as follows
for each interaction: At the start of the interaction, the robot
moves its wide-open hand to an initial point. An object is
placed in the middle of the table. If the selected action is
push, a random pushing angle is defined and the robot pushes
the object to a constant distance from that angle with open
gripper. If the selected action is grasp, a random grasping
angle is defined and the hands starts to close on the way
while the hand is approaching to the object. After closing
down the gripper completely and grasping the object, the
robot moves the object up to a constant height. At each time
step, the joint data of the robot and the image recorded using
the vision sensor are collected. In the end, 40 push and 40
grasp interactions are collected using the simulator.

A. Predicting the Approach Angle and the Type of Action
According to Visual Observations

In this experiment, we verify whether our system can
produce visual sequence of the expected observation and
the required joint values given a single image obtained from
the beginning of the demonstration. Figure 3 shows example
results in predicting the type of motion and the approach
angle by using a single image taken from the beginning of the
motion. The observed images are shown in Figure 3-left. It
can be seen that exploiting to the position of the robot hand in
the observed image, our system could successfully predict the
approach angle to the object and produce correct images for
the rest of the time-steps accordingly. Although the approach
angles of the row 1-2 and row 3-4 in the figures are the same
in between, our system could successfully predict the type of
the action and produce grasping or pushing actions according
to the state of the gripper in the observation images which
was wide open or closing. The ground truth and the predicted
images at the four target times-teps are shown in Figure 3-
middle-right.



Fig. 3. Image prediction results of the proposed framework. Left: The image that is used as the observation to predict the images of other four timesteps.
Middle: The ground truth images of the target timesteps. Right: The images that are predicted for the target timesteps through dual channel CNMPs

B. Generalization of the System to the Novel Visual Infor-
mation

We tested our system with different novel scenes that have
different properties that are not in the training set. Figure 4
shows the generalization performances of the two different
configurations. The first row shows a scenario in which the
color of the object was different from the object in the
training data, and the second row shows a configuration
where the size of the object was changed. Despite not
seeing a big or blue object in the training, our system could
successfully predict the correct approaching angle and the
action using the observed image in both configurations. It
can be seen that the color and the size of the objects are
predicted as in the configuration in the training images. This
is expected since there was only a single configuration of
the object in the training scenes which was yellow and
small. Even though the object in the observed image was
not the same with the training, our system could generalize
the knowledge that is learned in the training procedure to
produce a correct output to satisfy the given observation and
accomplish the task.

IV. CONCLUSION

In this paper, a mirror neuron framework based on Condi-
tional Neural Movement Primitives is proposed. Visual data
and joint information are trained together to construct a better
and more quality representation space. Our future work will
study demonstrating the use of predicted motor signals in
reproducing an observed action or scene, and assessing the
effect of the perspective on the prediction capacity.

Fig. 4. Generalization performance of the proposed system in two different
configurations. First row: the color of the object is blue. Second row: the
size of the object is bigger than the original one.
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