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Abstract— While humans are aware of their body and ca-
pabilities, robots are not. To address this, we present here
the first step towards an artificial self-aware architecture for
dual-arm robots. Our approach is inspired by human self-
awareness developmental levels and serves as the underlying
building block for a robot to achieve awareness of itself while
carrying out tasks in an environment. Our assumption is that a
robot has to know itself before interacting with the environment
in order to be able to support different robotic tasks. For
this, we propose a neural network architecture to enable a
robot to know itself by differentiating its limbs from different
environments using visual and proprioception sensory inputs.
We demonstrate experimentally that a robot can distinguish
itself with an accuracy of 89% from four different uncluttered
and cluttered environmental settings and under confounding
and adversarial input signals.

I. INTRODUCTION

While humans are aware of their body and capabilities,
robots are not. To address this, we present in this paper the
first step towards an artificial self-aware architecture for dual-
arm robots. When we become self-aware, we can recognise
ourselves in any environment. This is possible because we
can distinguish and recognise our body as a separate entity
from the world, allowing us to adapt to different situations
and scenarios. Robots, however, lack this capability because
they are limited to fixed configurations, engineered to work
in constrained environments.

Researchers have theorised [1], [2], [3], [4] that an adapt-
able robot can increase its productivity, and that a self-
aware robot can increase its task efficiency over different
settings and environments. For this, we propose to ground our
approach to robotic self-awareness in Rochat’s [5] five levels
of self-awareness where each level represents a competence
that humans utilise to learn and adapt to its body and then to
environments. We, therefore, propose that a robot starts by
interacting with itself to construct a self, before interacting
and dealing with the environment and objects, as shown
in Fig. 1. Our approach contrasts to previous and current
approaches to construct the self, where the self is built
following a top-down approach via the interaction with the
environment [4], [6], [7], [8].

In this paper, we investigate the first, basic level of self-
awareness which will serve as the building block for enabling
a robot to become an adaptable and flexible autonomous
machine. For this, we frame the basic level of self-awareness
as a binary classification task in which we let the robot to
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Fig. 1. A robot differentiates, recognises and situates itself first with its
body, and then interacts with the environment.

answer whether it can distinguish itself as an entity in an
environment with a certain degree of certainty (i.e. certainty
is the accuracy of the classification).

II. RELATED WORK

Rochat [5] has classified self-awareness into five levels,
starting from sensing self as a separate entity in the world
(Level 1) to self-consciousness (Level 5). Later, Rochat [9]
proposed that self-unity (Level 0) is the primary phase of
newborns which comprises the initial experience of sensory
during the first hours of life, and concluded that self-unity
is equipped in robots in terms of its kinematics, sensors,
software, and physical capabilities (e.g. working volume,
reach, etc.). The ordering of the five levels of self-awareness
is based on their relative complexity and are further divided
into implicit (from zero to two) and explicit (from three
to five) levels [5], [10]. That is, Legrain et al. [10] have
formulated that the implicit self-awareness levels are related
to correlating the internal states with the body based on the
experience of the self within an environment. The explicit
self-awareness levels are those that link the environment to
how the environment influences the person. In this paper, we
focus on the first self-awareness level and, for completeness,
we summarise the implicit levels of self-awareness according
to [5] as follows:

o Level Zero — ”Self-unity”. An individual is born with
basic multi-sensory and motor control capabilities which
they use to learn about itself.

« Level One — “Differentiation”. The individual gets a
sense that there is something unique in the experience
between what is out there and the felt movements to
initiate the sense of self.

o Level Two — ”Situation”. An individual situates within
its body by experiencing the relationship between seen



movements and body stimulation over time.

In robotics, Torras [3] and Chatila et al. [4] have stated
that there is a need for robots to be capable of handling
different environments while showing high adaptability to
any environment. However, Agostini et al. [11] have argued
that robots cannot accommodate all human environments,
and hard-coding all possible situations is a challenging task.
To mitigate this, researchers [12], [13] have proposed to
learn an awareness model inspired by the free-energy princi-
ple [14] (or a variation of it) in robotics which states that the
interactions with the environment are aimed at reducing the
internal entropy (i.e. maximising the robot’s self-certainty)
of an agent. For example, [12], [13] has shown that a robot
or its environment might change, and the capability of the
robot to adapt to different environments is predicated on
the assumption that a robot learns continuously using an
active inference model. They thus enabled a robot to adjust
its control to the task at hand by minimising the distance
between the robot’s hand and the target object [13] or where
the robot’s hand is to its internal belief [12]. However,
the authors constrained the robot to have reduced visual
perception capabilities in order to simplify the inference task,
relying on an observed action within an uncluttered, simple
operating environment.

Similarly, Amos et al. [15] have demonstrated that by
framing awareness on predictive control models allow a robot
to create a link between itself and the environment. Haber
et al. [16] has developed an intrinsically motivated agent
by using world-model predictions via a supervised learning
strategy to model agent awareness in order to generate differ-
ent behaviours in complex environments. The above robotic
agents have learned to deal with the environment while
carrying out a task. However, we argue that a robotic system
must have the capability to recognise itself before performing
actions for a task within an environment (as shown in Fig.
1). Kwiatkowski et al. [2] have shown that a robot can model
itself without prior knowledge of its structure, and constructs
a self-model that can adapt to mechanical changes that occur
to the robot. Their work has demonstrated that self-modelling
is the conduit to adaptable and resilient robotic systems.
However, the proposed self-model architecture learns about
the robot’s internal mechanical structure, and it is not able to
make a distinction of itself as an entity in the environment
without being explicitly defined. The basic robot’s existence
as an entity reflects the first level of self-awareness, and
Kwiatkowski’s self-model is not aware of the distinction
between itself and the environment.

In this paper, we, therefore, propose that a robot learns
how to distinguish itself from the environment before act-
ing on it. For this, we investigate and develop the first
level of self-awareness [5] and demonstrate that a robot
can experience the self by simplifying the learning task to
distinguishing itself in different contexts.

ITII. MATERIALS & METHODS

Our approach to artificial self-awareness focuses on build-
ing an initial sense of self in the robot by enabling it to

- -

Fig. 2. Sample images from captured scenes, ref. Table I

differentiate itself (i.e. Level One in Rochat’s self-awareness
levels, Section II) from the environment using proprioception
and vision. For this, we design a Deep Neural Network
architecture to support and understand the self in the robot.
The levels of implicit self-awareness (Section II) inspire our
architecture design, and we, therefore, propose that these
implicit levels can be mapped to robots as follows:

o Level 0 — ”Self-Unity”: This level corresponds to the
robot’s physical, mechanical and sensory capabilities,
and its manufacturer’s structure configurations, e.g.
robot’s kinematics, dynamics, sensor definition and con-
figuration, motion planning, etc. These capabilities are
interfaced via software APIs and software drivers (e.g.
the Robot Operating System, ROS).

o Level 1 — Differentiation”: This level is the initial self,
and we propose that this level is about learning how
to differentiate itself by seeing its arms and gripers
in association with its proprioception without temporal
connection between observations. The assumption at
this level is that the robot has a description of its limbs
via forward and inverse kinematics, and can move its
arms via motion planning. The objective is then to
confirm if the observed arms and grippers belong to
the robot.

The rationale behind our approach is to define a neural net-
work architecture that provides a way to learn the first level
of self-awareness and to understand the internal mechanisms
of a self-aware robot. The predicted output of the neural
network is, therefore, a supervised binary classification task
that predicts the sense of self of the robot.

To achieve Level 1, the robot uses its visual sense to
discriminate its limbs together with proprioception. For this,
we used the robot’s vision and proprioception capabilities
as the sensory inputs for our approach. Vision comprises
RGB images captured using a stereo ZED camera from
Stereolabs configured to output images at 720p resolution.
Captured images contain a representation of the robot’s arms
or environment. Proprioception consists of the robot’s joint
states; being velocity, angular position, and motor torque.

Our architecture for Level 1 of self-awareness consists of
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Fig. 3. Unseen test group confusion matrices each with its four confounding cases
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EXPERIMENTAL GROUPS AND UNSEEN TEST GROUP DATASETS

CONFOUNDING EXPERIMENTAL CASES

a Resnet18 network [17] to process the visual state of the
robot. Similarly, for proprioception, we used a single, fully
connected network layer to process the internal state of the
robot. The output from Resnet18 is a tensor size of 19 that is
concatenated with the output of the proprioception tensor of
size 76. The concatenated tensor is of size 95 and is passed
to a fully connected layer - FC1. The output of FC1 is a
tensor of 32 that goes into the fully connected layer, FC2,
that predicts self or environment.

IV. EXPERIMENTS

To understand Level 1, we adopted a leave-one-out cross-
validation strategy to test each trained experimental group.
By having an unseen experimental group, we are then able to
verify the validity of our hypothesis that Level I for artificial

Experimental Groups Sets Unseen Test Group Class Description
Group-1 { In lab, Front glass, Front computers Case-1 Self Vision and propioception correspond to the
Front towel } puters robot’s arms being in the field of view
Front computers, In lab, . Vision and propioception correspond to the
Group-2 lgront glass } Front towel Case-2 | Environment robot’s arms not being in the field of view
Group-3 { Front computers, Front glass, In lab The robot’s arms are in the field of view
Front towel } Case-3 | Environment | but the propioception matches the
Group-4 { Front computers, In lab, Front elass envirionmelilt class
Front towel } glass Propioception corresponds to the self
Case-4 | Environment | class but the robot’s arms are not in the
field of view

self-awareness in the robot increases its self-certainty in
an unseen environment. Accordingly, confusion matrices for
each unseen test group in Table I are shown in Fig. 3. The
classification accuracy for each unseen test group is: Group-
1 is 88.1%, Group-2, 90%, Group-3, 82%, and Group-4,
94.7%. We can, therefore, state that our architecture enables
the robot to differentiate itself from the environment with an
average certainty of 86.2%.

To further test our hypothesis, we devised an experiment
comprising four confounding experimental cases (Table II)
that compare the unseen experimental groups against con-
founding scenarios the robot may encounter. The objective is
to confirm that the robot can differentiate itself with a certain



Group-2 Group-3 Group-4

Fig. 4. Mutual information and joint 2D histograms of the trained weights
for four Level 1 architectures. The mutual information is noted at the top
left corner on each joint histogram plot.

degree of certainty while presented with confounding sensor
signals.

To further understand whether our Level 1 architecture
learns to differentiate the robot from the environment, we
computed the Mutual Information [18] for each group’s
train dataset (Table I). Our objective is to measure and
compare if four Level 1 trained architectures have a degree
of similar knowledge that it is invariant to the training set.
Mutual information allows us to compare multimodal sources
and measure how well two sources are matched by mutual
dependence between two variables. That is, different sources
of information means more distributed points in the joint
histogram and, consequently, low mutual information metric.

The spread in the joint histogram is associated with uncer-
tainty, and in Fig. 4, joint histograms show minor variability
in the correlation between the group’s models weights. The
latter shows that there are no significant differences between
the trained models despite the differences in the training
datasets, and the misclassification in the confusion matrices
results (Table I) are based on the environment noise as
other objects within the environment distract the network
attention. Since mutual information is computed at the last
layer of our architecture, proprioception is taken into account
during the classification. Therefore, this demonstrates that
our Level 1 network architecture captures a degree of self-
awareness and, consequently, certainty. We can, therefore,
conclude our experimental hypothesis in Section IV holds
for the experiments presented in this paper.

V. CONCLUSIONS

In this paper, we presented an approach to Level 1 of
artificial self-awareness in a dual-arm robot. Our approach

is inspired by the first level of self-awareness defined by
Rochat [5]. By using vision and proprioception, we have
demonstrated that a robot can differentiate itself from the en-
vironment with an average classification accuracy of 88.7%
using unseen test samples and across four different scenes’
groups presented in Fig. 3. Future work comprises develop-
ing further levels of artificial self-awareness. For level 2, we
propose to employ temporal sequences of the robot’s arms,
and model visual and proprioception experiences.
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