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Abstract— A robot manipulation task often requires the
correct perception of an interactive environment. Environment
perception relies on either visual or haptic feedback. During
a contact rich manipulation, vision is often occluded, while
touch sensing proves to be more reliable. And a force sensor
reading often entails abundant time series segments that reflect
different manipulation events. These discriminating time series
sub-sequences are also referred to as shapelets. The discovery of
these shapelets can be considered as a clustering problem and
the distance of sample time series to these shapelets is essentially
a feature learning problem. Additionally, shapelets can also
be considered as dictionaries in compressed sensing. This
paper proposes a neural network with t-distributed stochastic
neighborhood embedding as a hidden layer (NN-STNE) to
project a long time series into a membership probability
to a set of shorter time-series sub-sequences, i.e., shapelets.
In this way, the dimensions of input data can be reduced.
To preserve the local structure within data in the projected
lower-dimensional space as in its original high dimensional
space, a Gaussian kernel-based mean square error is used to
guide the unsupervised learning. And due to the non-convex
nature of the optimization problem for shapelet learning, K-
means is used to find initial shapelet candidates. Different
from existing shapelet/feature/dictionary learning algorithms,
our method employs t-stochastic neighborhood embedding to
overcome the crowding problem in projected low-dimensional
space for shapelet learning. Moreover, our method can find an
optimal length of the shapelets using L1-norm regularization.
The proposed method is then evaluated on the UCR time
series dataset and an electrical component manipulation task,
such as switching on, to prove its usefulness on improving
clustering accuracy compared to other state-of-art feature
learning algorithms in the robotic context.

I. INTRODUCTION

In a contact-rich manipulation task, such as grasping, as-
sembly, and handling, different errors may occur. Interpreting
and understanding the touch sensor information can help
us identify the root causes. For instance, a force impulse
is detected in a time interval that is not supposed to be
present. This may indicate a possible collision of a robot
on an obstacle in an environment. Another example would
be a time delay of a certain event represented by a force
pattern, such as a level shift. This could suggest a change in
the environment to interact with.

Uncovering and identifying certain force patterns can not
only help us in diagnosing a robot application but also can
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Fig. 1: A robot application: switch pushing task (left)
and examples of identifying discriminative time series sub-
sequences that distinguish a time series from others recorded
in this application (right)

be used for robot motion segmentation or detection of a
schematic change in a robot application offline.

An use case application is illustrated in Fig.1, where
a KUKA LBR iiwa 7kg tries to slide the lever up on
the switch mounted on an electrical cabinet. Here two
different errors can occur: the switch is already on, i.e.,
the lever of the switch is already pointing up; the switch
is broken, where the lever can not be easily flipped on.
The amplitude of external forces at the robot flange are
depicted in Fig.1, where the purple curves are the min-
max normalized trajectories of external forces at robot flange
from three different classes, with two classes for unknown
error and one for a normal case. The three additional plotted
sub-sequences on the purple curves are learned shapelets,
which highlight the differences between the trajectories from
three different classes. In general, the extraction of time
series sub-sequences, i.e., shapelets, can be termed as an
unsupervised feature learning problem. Therefore, this paper
aims at extracting discriminative features from the time-
series data that can increase clustering accuracy.

In summary, the contribution of this paper is stated as
follows:

• This paper presents a novel approach for unsupervised
shapelet learning in bag-of-words sense.

• In essence, this approach (NN-STNE) is to learn in-
terpretable features in an unsupervised way. It outputs
similarity measures between an original time series and
a list of shapelets. Using these transformed similarity
measures as input features for clustering UCR open
time-series dataset, we prove that this feature learn-
ing algorithm achieves competitive results compared to
other state-of-art feature selection algorithms.
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II. RELATED WORK

Shapelets [1] are originally proposed as time series sub-
sequences that are considered as discriminating patterns
for classification of temporal sequences. The basic idea to
discover shapelets is to assess all possible segments from
time-series data based on a merit function that measures the
predictive power of a given sub-sequence for some class
labels. In [1] at first a large set of shapelet candidates
are generated and their similarity to time series segments
across all the training samples is computed using the brute-
force algorithm. Then a decision tree algorithm is applied
to recursively split training samples into different subsets by
selecting a shapelet candidate to maximize the information
gain for classification.

Unsupervised feature selection entails shapelet learn-
ing, because a shapelet can also be considered as a time
series feature. The challenge of feature selection without
class labels is to discover uncorrelated and discriminative
features. Different algorithms have been introduced. One of
the state-of-art algorithms is using dictionary learning to
discover shapelet in a generative way [2]. It considers a
shapelet as an atom of dictionary and requires sliding the
original time series into sub-sequences of the same length as
shapelet, i.e., a dictionary atom. By trying to reconstruct slid
sub-sequences, the algorithm jointly optimizes the shapelet
dictionary and its corresponding sparse encoding for slid
sub-sequences. This can result in losing global information
of the original time-series and falling into the pitfalls of
time series sub-sequence clustering [3]. Besides focusing
on the shape feature of time series, each sample point in
a time series can also be referred to as a potential feature
similar to using pixels as input features for image clustering.
[4] presents a l2,1-norm regularized discriminative feature
selection algorithm for unsupervised learning (UDFS) .

The presented algorithm in the scope of this paper differs
from the above mentioned methods, in which we employ t-
stochastic neighborhood embedding to perform a non-linear
mapping between original data and shapelets and also attains
the interpretability of the selected features.

III. PRELIMINARIES

In this paper, scalar variables are denoted by unbold alpha-
bets such as (a, b, c, α, β, γ, · · · ) whereas vector variables are
denoted by bold lower-case alphabets (a, b, c,α, · · · ) and
matrices by upper-case alphabets (A,B, · · · ). The index of
samples is represented by n; the index of a point in a time-
series by q; the index of a point in a shapelet by m; the index
of shapelets by k; the index for the class labels by c. Note
that the unspecified parameters are denoted by lower-case
letters while a constant defined number is represented with
an upper-case letter, such as N,C,K, etc. For instance, the
number of samples is denoted by N , the length of a time-
series is written as Q, the length of patterns is represented
with M , the number of patterns is K and the total number
of class labels is denoted by C.

IV. UNSUPERVISED SHAPELET LEARNING WITH
STOCHASTIC NEIGHBORHOOD EMBEDDING (SNE)

In this section, we aim to introduce the novel unsuper-
vised shapelet learning model with deep embedding. Since a
shapelet is a discriminative time-series segment, its length is
always shorter than the input time series. Therefore, a sliding
window approach from [6], which slides the input time series
into equal size of shapelet length, is presented at first. Then
follows the calculation of similarity between the candidate
shapelets and the time series sub-sequences. After that, for
each candidate shapelet, its corresponding most similar time
series sub-subsequence from one input time series is selected.
The normalized cross-correlation score for measuring the
similarity between training data sub-subsequence and candi-
date shapelet is then converted into a probability distribution.
The more similar they are, the higher the probability to assign
the time series sub-sequence to this candidate shapelet will
be. Based on this probability distribution, the corresponding
shapelet candidates will be updated to an extent that is
proportional to its assignment probability. Fig.2 illustrates
the whole architecture at a glance.

Fig. 2: Overview of the network architecture

A. Layers in NN-STNE Network

Initial Estimation of Number and Length of Shapelets
For the length of shapelets we adopt the same strategy as

in [6]. By human inspection, we estimate a possible length
of shapelets, e.g., M . The number of shapelets, i.e., K , of
size M , is chosen in a way, such that a large number of
input time series, i.e., N , of length Q from different classes
C can be represented using only K number of shapelets. It
can be interpreted as a vector quantification problem with
each shapelet as one bit. Then it is equivalent to solve the
following equation:

2K = N × (Q−M)× C (1)

By solving the above equation, one can obtain K =
log2[N × (Q − M) × C] assuming that each shapelet is
completely different from each other.
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Sliding Window Approach Given a one-dimensional
time-series sample, i.e. t = [t1, t2, t3, · · · , tq] of length Q,
and a desired shapelet to learn as s = [s1, s2, · · · , sm] of
length M . In order to perform a point-to-point similarity
measurement calculation, it is required that the segments to
be compared should be of equal size. Since the expected
length of a shapelet is often pre-defined according to some
heuristics, the input time-series can be split into segments of
equal length as shapelets. To achieve this, the implementation
of [6] is used. The sliding window approach is realized by the
convolution operation. And therefore, a time series of length
Q can be divided into J := Q −M + 1 sub-sequences of
equal size of M .

Time Series Similarity Layer After sliding the input
time-series into equal size, each will then be compared
to a shapelet candidate. There are many different metrics
for measuring time-series similarity: cross-correlation [7],
dynamic time warping [8], Euclidean distance. In the scope
of this paper, we adopt the normalized cross-correlation for
measuring time series similarity. In this way, the obtained
shapelets are not simply the average of matching time series
sub-sequences from the input, but rather only a segment in
a shapelet that better correlates with another segment in a
slid sub-sequence from input time series get updated. Con-
sequently, the characteristics in the input time series, such
as, sharp changes, can be captured better. The calculation of
cross normalized correlation in [7] is applied and we use fast
Fourier transform (FFT) to speed up the computation [9]. By
[7], the normalized cross correlation can be expressed as:

NCC(sk, ti,j) = max
ω

(
CCω(s

z
k, t

z
i,j)
)

(2)

Di,j,k = 1−NCC(sk, ti,j) (3)

with szk, tzi,j as z-normalized k-th shapelet of length M
and j-th slid window of length M from the i-th time
series sample respectively. And ω is the amount of right
or left shift of a time series sub-sequence according to
the definition of cross correlation, which is expressed as a
function CCω(·). Additionally, NCC(sk, ti,j) is a function
that denotes the normalized cross correlation between k-th
shapelet sk and time series sub-sequence ti,j and Di,j,k is
an entry in the time series similarity matrix D ∈ RN×J×K .
By the definition of normalized cross correlation, it has a
range between -1 and 1, i.e., NCC(sk, ti,j) ∈ [−1, 1]. For
simplicity and avoid negative activation in neural network,
we subtract the normalized cross correlation score from 1 to
obtain Di,j,k as defined in (3). The smaller the Di,j,k, the
more similar the sub-sequence and a shapelet candidate will
be.

T-Distributed Stochastic Neighborhood Embedding (t-
SNE) Layer

After transforming the time series data, i.e., T ∈ RN×Q

into distances to different shapelets, i.e., D ∈ RN×J×K

Then follows the selection of for each shapelet most match-
ing sub-sequence in one time series sample by min-pooling,

i.e., Fi,k = minjD with Di,j,k as an entry in D and Fi,k as
an entry from the new matrix, i.e., F ∈ RN×K .Therefore,
we can represent a time series sample, i.e., ti ∈ RQ by the
distances to different shapelets, i.e., f ∈ RK as i-th row
in F ∈ RN×K , where we reduce the information amount
from original Q, i.e. the length of time-series, into K, i.e.
the number of shapelets. Here a shapelet can be considered
as a coordinate axis in lower-dimensional map space.

When a high-dimensional data is mapped into a low-
dimensional space, a crowding problem could occur [10].
Inspired by [11], a t-student distribution is employed to
convert the similarity between a most matching sub-sequence
and the shapelet candidates into probability:

qi,k =
(1 + Fi,k)/α)

−α+1
2∑

k

(
1 + Fi,k/α)−

α+1
2

) (4)

where α is the degree of freedom of student t-distribution
and Fi,k is a distance metric always larger than 0, and the
smaller the distance metric, the higher the similarity score.
In the following experiment, we let α = 1 [12].

B. Objective Function
Spectral Analysis. It is assumed that two similar time se-

ries should share similar distances to candidate shapelets.To
describe this, a mean square error scaled by Gaussian kernel
from the spectral analysis is adopted [13]. Consider that
G ∈ RN×N is the matrix for describing similarity among
all the time series samples with an entry defined as: G(ij) =

e−
‖ti−tj‖2

σ2 with σ denotes the variance of the Gaussian
kernel and ti, tj are for two different time series samples.
The variance of the Gaussian kernel also defines the effective
number of neighbors for a given sample point [14]. With this,
the Gaussian kernel based mean square error is expressed as:

1

2

N∑
i=1

N∑
j=1

G(ij)

∥∥∥q(i,:) − q(j,:)∥∥∥2
2

=
1

2

K∑
k=1

N∑
i=1

N∑
j=1

G(ij)

[
q(k,i) − q(k,j)

]2
=

K∑
k=1

qT(k,:) (DG −G) q(k,:)

= tr
(
qTLGq

)
(5)

where q(i,:), q(j,:) ∈ R1×K are the transformed distances of
time series sample i, j to shapelet candidates respectively and
N is the number of time series samples. In addition, LG =
DG − G is the Laplacian matrix in spectral analysis with
DG as a diagonal matrix with element defined as DG(i, i) =∑n

j=1G(ij) Besides this, it is also important that different
shapelets should be as distinct to each other as possible.

Encouraging diverse shapelets. Again we employ Gaus-
sian kernel to penalize similar shapelets [13]. The similarity
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between shapelets can be described as H ∈ RK×K , where

an entry is defined as H(i,j) = e−
||si−sj ||

2

σ2 . And hence,
to encourage distinct shapelet is to minimize the norm of
shapelet similarity matrix, i.e., ||H||22.

Automatic selection of shapelets length. Shapelets are
the convolutional kernel weights in the time series similarity
layer as shown in Fig.2. To find out the optimal length of
shapelet, it is equivalent to applying regularization techniques
on kernel weights, where a L1 norm is introduced to force
shapelet filters to become zeros if possible. As a result, the
zeros in shapelets will not contribute to the calculation of
normalized cross-correlation. Consequently, the true length
of shapelets can be obtained by removing zero values in the
shapelet values.

In summary, the total objective function to minimize is
formulated as:

L = tr
(
qTLGq

)
+ λ||H||22 + β

K∑
k=1

M∑
l=1

|sk,l| (6)

with λ as a weighting factor of the minimization of shapelet
similarity and the last term β

∑K
k=1

∑M
l=1 |sk,l| as a shapelet

regularization term to automatic select optimal length of
shapelets. β is a parameter given by the user to weigh the
trade-off between learning of more similar shapelets to the
input data and generalization.

V. EXPERIMENT AND EVALUATION

In this section, the proposed method unsupervised shapelet
learning with t-distributed stochastic neighborhood embed-
ding layer is tested on public time-series dataset and its
performance is evaluated compared to other unsupervised
feature and shapelet learning techniques as mentioned in Sec.
II such as Uncorrelated and Discriminative Feature Selection
(UDFS) [4], k-Shape [7] and unsupervised shapelet learning
[13].

A. Data Sets

To make our evaluation comparable to other state-of-art
shapelet learning algorithms, a subset from the public open
data sets UCR 1 is used. On the other hand, we also need
to prove its usefulness in the robotics application. Therefore,
the data from the KUKA LBR iiwa switching on application
as depicted in Fig.1 is used. And a description of the used
data-sets is presented in Table I

B. Evaluation Metrics

To evaluate the performance of clustering, different eval-
uation metrics, such as Accuracy(ACC), Normalized Mutual
Information(NMI) [15], can be applied. To have a compara-
tive study on the method proposed in [13], we also use the
Rand Index to evaluate our algorithm.

1http://timeseriesclassification.com/dataset.php

TABLE I: Statistics of benchmark time series data set.

DATA SET TRAIN/TEST LENGTH # CLASSES

ECG 200 100/100 (200) 96 2
CBF 30/900 (930) 128 3
FACE FOUR 24/88 (112) 350 4
OSU LEAF 200/242(442) 427 6
ROBOT SWITCH

PUSH UP
489/81(570) 433 3

TABLE II: Comparison of different algorithms in terms of
clustering performance

DATA SET KMEANS
UDFS

+KMEANS
NN-STNE
+KMEANS

ECG 200 0.6 0.55 0.7
CBF 0.74 0.73 0.93
FACE FOUR 0.74 0.73 0.81
OSU LEAF 0.76 0.76 0.76
SWITCHING UP 0.74 0.74 1.0
AVERAGE 0.72 0.7 0.84

C. Comparison Results

Since our algorithm transforms time series data into dis-
tances to shapelets and does not directly output pseudo-
labels, to prove its usefulness, we consider the transformed
shapelet distances as extracted features and feed them to a
clustering method, such as KMeans. Consequently, a pre-
dicted label can be obtained. Then we compare our feature
learning algorithms NN-TSNE with other feature learning
algorithms mentioned in Sec.II such as, UDFS [16], using
Rand Index defined in [13]. We select the best results
obtained by UDFS using different number of neighborhood
and list the results in Table II. The best result for each data
set is highlighted in bold.

From Table II we can observe that in most of the cases
using NN-STNE as feature selection algorithms before ap-
plying KMeans can help us achieve better clustering results
than without applying any feature selection algorithms. Inter-
esting is also to note that using UDFS as feature selection can
somehow make the clustering result slightly worse. And from
these five data sets, we can observe a 16.7% of improvement
on clustering results using KMeans on average.

D. Conclusion

Time series data can be analyzed from either the temporal
perspective or shape perspective. In this paper, we focused on
the shape perspective of time series data and proposed NN-
STNE as a feature learning algorithm to discover discrimina-
tive time-series sub-sequences using embedded learning and
proved that, when shape features in time series data prevail,
applying it as a feature selection step can help improve
clustering accuracy.
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