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Abstract— The performance of Human Activity Recognition
(HAR) models, particularly deep neural networks, is highly
contingent upon the availability of the massive amount of
annotated training data which should be sufficiently labeled.
Though, data acquisition and manual annotation in the HAR
domain are prohibitively expensive due to skilled human
resource requirements in both steps. Hence, domain adaptation
techniques have been proposed to adapt the knowledge from
the existing source of data. More recently, adversarial transfer
learning methods have shown very promising results in image
classification, yet limited for sensor-based HAR problems, which
are still prone to the unfavorable effects of the imbalanced
distribution of samples. This paper presents a novel generic
and robust approach for semi-supervised domain adaptation in
HAR, which capitalizes on the advantages of the adversarial
framework to tackle the shortcomings, by leveraging knowledge
from annotated samples exclusively from the source subject
and unlabeled ones of the target subject. Extensive subject
translation experiments are conducted on three large, middle,
and small-size datasets with different levels of imbalance to
assess the robustness and effectiveness of the proposed model
to the scale as well as imbalance in the data. The results
demonstrate the effectiveness of our proposed algorithms over
state-of-the-art methods, which led in up to 13%, 4%, and 13%
improvement of our high-level activities recognition metrics
for Opportunity, LISSI, and PAMAP2 datasets, respectively.
The LISSI dataset is the most challenging one owing to its
less populated and imbalanced distribution. Compared to the
SA-GAN adversarial domain adaptation method, the proposed
approach enhances the final classification performance with
an average of 7.5% for the three datasets, which emphasizes
the effectiveness of micro-mini-batch training. The manuscript
provides a comprehensive evaluation of model performance, the
explanation of the training procedure, the impact of sample
population on the classifier performance, and the depiction of
elements of the adversarial game.

I. INTRODUCTION

Sensor-based HAR can be formulated as predicting current
activity according to a sequence of sensors outputs. Any
HAR related dataset has a finite amount of samples that are
obtained from a limited number of human subjects. However,
considering the requirements of applying HAR in real-world
conditions, it is more interesting to evaluate the performance
of an HAR model against many human subjects who their
behaviors’ data have not been included in the training dataset.

The shift between the source and target may root in the
learning domain, learning task, or both. Furthermore, the
source and the target domains may be dissimilar also in terms
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of class distributions, typically known as class imbalance
problem in machine learning, in which, the conditional
distributions of feature values are the same in source and
target domains, yet the labels may not follow the same
distribution in both domains.

Subject level knowledge transfer concentrates on the gen-
eralization of the knowledge a machine learning model. The
latter is trained from a known subject and should be extended
to unknown or unseen subject. Let us consider an HAR
system that is supposed to recognise the activities of the
inhabitants of smart homes. The inhabitants are considered as
new subjects from the perspective of the HAR system. Even
if the HAR system can be setup to temporarily collect data
and learn inhabitants activities in the same time in a kind of
a system initialisation mode, the annotation of the collected
samples, by human experts or the inhabitant themselves
to apply supervised machine learning will be infeasible.
In this case the appropriate approach is a semi-supervised
learning, where labeled data is provided in the source domain
(subject) while target domains’ samples are label excluded.
Formally, the objective is to adapt the target domain Dt =(
Xt, P (Xt)

)
to the source domain Ds =

(
Xs, P (Xs)

)
so

as to have enough labeled data to train a HAR model on
target domain. It has commonly been assumed that in the
class imbalance domain adaptation problems, P (Xs|Ys =
yi) = P (Xt|Yt = yi) is held for all classes i, though the
distribution of classes may not be the same in both domains
[1]. Taking any pair of subjects in the evaluation sets as the
source and target domain, there exists a shift between the
class probability distribution of both domains, which means
P (Ys) 6= P (Yt). The imbalanced class distribution, along
with the absence of the labels in the target domain, may
pose a significant drawback on the performance attainable
by the adaptation process.

Domain adaptation methods can be sorted out into 4
categories based on the type of knowledge transferred:
Instance, feature representation, parameter, and relational
transfer [2]. The first two categories focus on drawing the
samples of both domains closer, by direct transformation
or finding a common representation, respectively. Parameter
and relational transfer methods transform prior knowledge
and parameters and data relationship between domains. Each
Transfer Learning approach should address the primary ques-
tions of What, How, and From where to transfer [3]. The
proposed solution is a kind of instance transfer except that
it combines the data transformation and classifier training



procedure. Therefore, it transfers instances and parameters
instantaneously. To simplify the problem in terms of sources
of transfer, we focused on one-to-one translation for this
work. Following section will address the question of How
to transfer.

II. PROPOSED METHOD

Let us consider Xs = {(xs, ys)i | i = 0→ ns} represents
the set of ns labeled samples from the source domain Ds =
(Xs, P (Xs)) and Xt = {(xt)i | i = 0 → nt} denotes the
set of nt unlabeled samples from the target domain Dt =
(Xt, P (Xt)). The proposed adversarial adaptation model
consists of a Generator (G), Discriminator (D), and Classifier
(C). The generator G(x, z; θG) is a differentiable function
represented by a Convolutional Neural Network (CNN) that
generates synthetic data, also called fake samples, by using
the input and noise vector. The discriminator D(x; θD) is
defined as a CNN that outputs a single scalar indicating the
probability that x came from the target domain rather than
the generator. The classifier C(x; θC) is also a CNN predicts
the class of the input. These elements are playing a min-max
game together based on the cost function J which combines
the loss functions of adversary and classification tasks as
follows [2]:

J(G,C,D,Xs, Xt) =

min
G,C

max
D

µJD(D,G,Xt, Xs) + λJC(C,G,Xs) (1)

The impact of the classification JC and adversary JD task
loss on the generation task are reflected and controlled
by µ and λ coefficient respectively. Generator supposed to
generate artificial data which are similar to the samples of
the target domain by descending on the gradient of J. During
the training phase, these fake generated samples are getting
as similar as possible so that the discriminator will not be
able to discriminate them from the original target data. The
training samples are commonly feeding into the adversarial
frameworks in mini-batch form, to avoid the mode collapse
problem in which, the generator learns only to generate fake
samples from a few classes (modes) of the data distribution,
albeit the samples from the ignored modes appears in the
training set [4]. Therefore, the generator collapses into the
few modes that discriminator assumes them highly realistic.
On the contrary, feeding the samples in mini-batch to the
discriminator rather than in isolation, gives a broader horizon
to the discriminator and possibly avoids the mode collapse.
However, it would not be practical enough in all cases,
especially for the highly imbalanced small-size datasets such
as LISSI. Mini-batch selection of the dataset would even
aggravate the problem in practice since it scales down the
sample size. It is highly probable that the less populated
classes be left without a representative in some batches, as
the sample size shrinks and the proportions of the classes in
the sample space cannot be taken for granted. Consequently,

the discrimination of that certain classes would be uncon-
cerned in the gradient computation of the batch due to the
disappearance of their samples.

To tackle this issue, we applied a micro-mini batch strategy
of learning. Each mini-batch consists of C micro-batches
whereas C is the number of classes of activities in the dataset.
Micro-batches contain m samples randomly drawn without
replacement from each one of C classes while m can be set
by the value of the least populated class population in the
dataset. In this way, the proposed adversarial approach does
not only prevent the Mode Collapse and its related issues
but also enables a kind of parallelism of instance transfer
and re-training of the target domain’s classifier.

The optimization problem for discriminator can be solved
by ascending the gradient of a Mean Squared Error (MSE)
loss function JD:

JD(D,G,Xt, Xs) =
1

mC

C∑
j=1

m∑
i=1

[(
1−D

(
x
(i)
t

))2
x
(i)
t ∈bjt

+
(
1 +D

(
G(x(i)s , z)

))2
x
(i)
s ∈bjs

]
(2)

where bjs and bjt refer to the j-th micro part of the current
mini-batch from the source Xs and target Xt domain sam-
ples, respectively. Correspondingly, the classifier attempts to
assign a right label to its inputs including source domain data
and the synthetic data generated by optimizing the cross-
entropy loss function JC :

JC(C,G,Xs) =
1

mC

C∑
j=1

m∑
i=1[

− y(i)s logC
(
x(i)s

)
− y(i)s log

(
C
(
G(x(i)s , z)

))]
x
(i)
s ,y

(i)
s ∈bjs

(3)

Finally, when the training loss values converge, the training
phase can be terminated and the classifier component will
be functional independently.

In summary, each iteration of the training procedure con-
sists of 3 steps for the mini-batch update of D, C, and G,
respectively. Reordering the steps may affect convergence
flow. The components of the model together struggle to
close in the distribution of target domain samples on those
of source domain where the labels are available. Having
samples with approximately the same distribution, source
domain labels are compatible to be exploited in supervised
training of the classifier. As the distribution of generated
samples P (G(Xs, z)) getting closer to P (Xt), C’s perfor-
mance improves since the source labels more deeply cohere
with target inputs.

III. EVALUATION

We evaluate the proposed model by conducting extensive
experiments on three datasets of different size (Opportunity,



TABLE I
COMPARISON OF THE THE GENERIC PROPOSED APPROACH PERFORMANCE AND GFK [5], STL[6] AND SA-GAN[2] MODEL, IN TERMS OF WEIGHTED

F1 MEASURE ON OPPORTUNITY DATASET. THE MOST DOMINANT PERFORMANCE IN EACH TRANSFORMATION EXPERIMENT MARKED IN BOLD.

Source Subject Target Subject Distance No Transfer STL GFK SA-GAN Proposed Model Supervised

1
2 46.69 0.45 0.65 0.59 0.73 0.74 0.75
3 45.10 0.27 0.37 0.43 0.45 0.58 0.71
4 77.15 0.40 0.47 0.55 0.49 0.57 0.59

2
1 40.47 0.48 0.52 0.62 0.56 0.56 0.65
3 34.38 0.44 0.46 0.51 0.52 0.40 0.71
4 72.80 0.29 0.46 0.40 0.39 0.42 0.59

3
1 38.38 0.23 0.40 0.45 0.42 0.52 0.65
2 37.54 0.21 0.54 0.53 0.61 0.52 0.75
4 73.69 0.31 0.37 0.44 0.44 0.50 0.59

4
1 73.53 0.26 0.38 0.51 0.51 0.52 0.65
2 70.80 0.29 0.54 0.45 0.55 0.68 0.75
3 69.44 0.24 0.48 0.37 0.49 0.53 0.71

TABLE II
COMPARISON OF THE THE GENERIC PROPOSED APPROACH PERFORMANCE AND GFK [5], STL [6] MODEL, IN TERMS OF WEIGHTED F1 MEASURE ON

PAMAP2 DATASET. THE MOST DOMINANT PERFORMANCE IN EACH TRANSFORMATION EXPERIMENT MARKED IN BOLD.

Source Subject Target Subject Distance No Transfer STL GFK SA-GAN Proposed Model Supervised

5 91.82 0.37 0.62 0.72 0.69 0.77 0.98
1 6 91.58 0.32 0.56 0.64 0.66 0.70 0.97

8 107.07 0.04 0.57 0.49 0.65 0.72 0.92

1 91.82 0.32 0.76 0.66 0.71 0.76 0.99
5 6 42.13 0.64 0.83 0.75 0.83 0.83 0.97

8 56.01 0.26 0.52 0.69 0.66 0.73 0.92

1 91.58 0.16 0.67 0.56 0.61 0.78 0.99
6 5 42.13 0.41 0.74 0.75 0.79 0.83 0.98

8 56.76 0.17 0.86 0.58 0.63 0.82 0.92

1 107.07 0.10 0.54 0.58 0.68 0.76 0.99
8 5 56.01 0.25 0.55 0.41 0.60 0.73 0.98

6 56.76 0.27 0.58 0.61 0.73 0.71 0.97

TABLE III
RESULTS OF APPLYING SUBJECT TO SUBJECT TRANSFER LEARNING ON LISSI DATASET.

S1→S2 S6→S2 S1→S3 S6→S3 S1→S4 S6→S4 S1→S5 S6→S5

STL 0.40 0.39 0.30 0.45 0.44 0.47 0.53 0.60
GFK 0.51 0.35 0.44 0.50 0.25 0.55 0.70 0.49
SA-GAN 0.56 0.54 0.66 0.70 0.54 0.67 0.76 0.78
Proposed model 0.58 0.56 0.70 0.65 0.52 0.64 0.76 0.70
Supervised 0.71 0.71 0.85 0.85 0.82 0.82 0.88 0.88

PAMAP2 and LISSI datasets) to assess its functionality and
robustness. We opted for W-F1 measure as the evaluation
metric since it gives better insight comparing to accuracy,
precision, and recall deliberating imbalance distribution of
classes in the dataset. Set of subject translation experiments
have been held to practically demonstrate the necessity of
domain adaptation and its effectiveness as well. For each
dataset samples of each subject are considered independently
as the source or target domain. For each target domain
(subject) a classifier is adapted, examined and compared with
two other adaptation methods, namely, STL[6] and GFK[5]

as well as adaptation performance upper bound. Table I to
IV reports the obtained results.

IV. CONCLUSIONS AND FUTURE WORK

This study set out to propose a generic adversarial frame-
work for knowledge transfer in the domain of Human
Activity Recognition. The proposed semi-supervised model
has been evaluated against three datasets with different
challenges to assess its robustness to the scale and imbalance
of the data. The findings of our research are quite convincing,
and thus the following conclusions can be drawn:



TABLE IV
THE MAIN CLASSIFICATION METRICS OF A SAMPLE CLASSIFICATION TASK ON OPPORTUNITY, LISSI, AND PAMAP2 DATASETS.

Opportunity Dataset LISSI Dataset PAMAP2 Dataset

Subject 4 → Subject 2 Subject 1 → Subject 5 Subject 5 → Subject 6

class precision recall support class precision recall support class precision recall support

Null 0.98 0.56 292 Kneeling 0.63 0.83 53 Ironing 0.87 0.99 137
Relaxing 0.81 0.84 190 Lying 0.78 0.78 79 Lying 0.89 0.99 85
Coffee time 0.34 0.33 225 Relaxing 0.99 0.87 142 Sitting 0.86 0.99 84
Early morning 0.61 0.84 372 Sitting 0.74 0.47 49 Standing 0.88 0.65 89
Clean up 0.34 0.57 224 Sit to Stand 0.80 0.88 100 Walking 0.87 0.86 93
Sandwich time 0.94 0.71 679 Standing 0.87 0.71 76 Running 0.82 0.94 82

Dance walk 0.69 0.51 57 Cycling 0.93 0.88 74
Warm up 0.38 0.73 41 Ascending 0.59 0.82 49

Descending 0.80 0.49 41
Cleaning 0.70 0.43 76

Accuracy 0.67 1982 Accuracy 0.76 597 Accuracy 0.83 810
W-Avg 0.74 0.67 1982 W-Avg 0.79 0.76 597 W-Avg 0.84 0.83 810

Compared to the SA-GAN adversarial domain adaptation
method, our proposed model enhances the final classification
performance with an average of 7.5% for the three datasets,
which reinforce the effectiveness of micro-mini-batch train-
ing approach. The proposed model provides striking results
on the PAMAP2 benchmark medium-size multi-class dataset.
It improved the adversarial domain adaptation performance
by applying a micro-mini-batch learning technique on Op-
portunity large-scale yet highly imbalanced dataset. Inter-
estingly, the proposed model revealed competitive results
compared to other states of the art models on the LISSI
dataset, which is very challenging in terms of both the num-
ber of samples and balance of classes. Our comprehensive
assessment was carried out over high-dimensional data of
highly abstract activities in all three datasets. Besides, the
proposed approach is not HAR-exclusive and it can be poten-
tially utilized to solve other domain adaptation problems. The
results support the effectiveness of the proposed model to
address the imbalanced learning challenges. Further studies
with more focus on the lack of samples problem will be
undertaken. In future investigations, it might be possible
to use multiple sources of knowledge or a combination of
transferred models from different source domains, and the

source/model selection policies. In addition, the integration
of the ontology-based reasoning to the present approach
could be a mean of improvement of the classification results
obtained by Machine Learning.
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