
Exploiting Refractory Period for Functional Multiplexing and
Short-Term Memory in Spiking Neural Networks

Zhenduo Zhai1 and Ismail Akturk2

Abstract— Spiking Neural Networks (SNNs) have recently
received attention in robotics due to their low power and
efficiency prospects. However, we argue that existing imple-
mentations of SNNs don’t exploit the greater potential inherent
to spiking neurons – particularly refractory period – that
could enable functional multiplexing and short-term memory.
We demonstrate how refractory period enables functional
multiplexing and form a short-term memory in SNNs which
would support complex functionalities, and learning methods
with smaller number of neurons compared to traditional SNNs
implementations that do not model the refractory period.

I. INTRODUCTION

Historically, it has been believed that the intelligence is
based on reasoning, where the logic (and its computation)
is the foundation of reasoning [1]. In this regard, the very
first attempt was made by McCulloch and Pitts, where they
demonstrated the neurons are capable of compute the basic
logical functions [2]. By combining such basic logic gates,
complex functions can be realized. Although this is a viable
approach (i.e., implementation of each basic logic gates via
set of neurons and building more complex functions from
them), it may render a less efficient way of utilizing the
SNNs, in terms of area and energy/performance.

We argue that exploitation of intrinsic properties of spiking
neurons (in particular refractory period behavior) could allow
us to realize complex logical functions with smaller number
of neurons compared to implementing logic gates with
conventional neural models, where each neuron is considered
to be ready to spike immediately regardless whether it has
fired recently, or not (refractory period is just considered as
intrinsic delay and has not been exploited). Fig. 1 shows
behavior of a typical biologically-plausible spiking neuron.
A neuron in resting state would spike, once its membrane
potential reaches a certain threshold (by integrating incoming
stimuli); and then, it enters in a refractory period in which
it cannot spike until the end of this period, regardless of the
strength of the stimulus it may have.

In this paper, we propose to use more biologically-
plausible artificial spiking neurons (that employs refractory
period), in particular to enable functional multiplexing and
to form short-term memory in SNNs.

1Department of Electrical Engineering, and Computer Science, University
of Missouri, Columbia, MO, USA zz7z9@mail.missouri.edu

2Department of Electrical Engineering, and Computer Science, University
of Missouri, Columbia, MO, USA akturki@missouri.edu

Fig. 1. Typical action model of a spiking neuron.

II. FUNCTIONAL MULTIPLEXING

Functional multiplexing is a method that allows SNN
to realize different functions during distinct time periods
without using separate network or extra neurons.

The way functional multiplexing in SNNs works as fol-
lows. Considering a network of spiking neurons, when a
set of neurons spike at a given time (let’s say at t0), they
cannot spike again until the refractory period ends (assume
the duration of refractory period is tr, they would not spike
until t1 where t1 = t0 + tr). This is very unique feature
that a given network would have a distinct set of active
neurons at any given time, allowing it to realize different
functions. In a sense, the whole network is time-multiplexed
at each time step based on what has been computed in
the previous time step (i.e., which neurons were active and
have spiked) . Such multiplexing is promising to realize a
complex functions with fewer spiking neurons compared to
naive way of implementing functions with traditional neuron-
based building blocks (e.g., logical gates) in which neurons
were considered to be available all the time (i.e., having no
refractory period).

A. Basic Assumptions and Conventions Used

Before diving into details of the proposed work, here
we describe the assumptions and conventions that we used
throughout the paper. Each spiking neuron has a threshold
that specifies the minimum amount of stimuli (i.e., active
inputs) needed for it to spike. We consider a spike represents
logical ’1’, whereas no spike represents logical ’0’. Without
loss of generality, we also assume that each connection
has the same weight (this is for simplifying the discussion;
otherwise, it is not a constraint for the proposed scheme
to work). Two types of neurons are assumed in SNNs: i)



excitatory, ii) inhibitory neurons, where excitatory neurons
contribute to spiking probability of the (post-)connected
neurons; and inhibitory neurons prohibit (post-)connected
neurons to spike. For the illustration of excitatory and
inhibitory neurons, we use circle and double-circle nodes
in the figures, respectively.

B. Neuron Behavior in Resting State vs. Refractory Period
Functional multiplexing in SNNs is based on the fact that

the behavior of a neuron differs depending on its current
state, even if the stimuli (i.e., inputs) remain intact. For
our discussion, a neuron can be in one of the following
three states: i) resting, ii) spiking, and iii) refractory period.
When a neuron is in resting state, it accumulates the inputs
connected to it, and when they reach to threshold, a spike is
emitted. After a neuron spikes, it goes into refractory period
in which it becomes unresponsive, regardless of the strengths
of the inputs. At the end of refractory period, a neuron gets
into resting state again. We propose to exploit the distinct
behaviors of a neuron in resting and refractory period to
realize functional multiplexing in SNNs.

(a) in resting state when (b) in refractory period when
t < t0; and spiking when t0 + ts ≤ t < t0 + ts + tr
t0 ≤ t < t0 + ts
Fig. 2. The behavior of a neuron in different states: a) spiking; b) refractory
period while inputs remain the same, i.e., [i1, i2, i3] = { 1, 1, 0 }.

Fig. 2 illustrates the behavior of a neuron in (a) resting, and
(b) refractory period, while the given inputs remain intact.
Given that i1 and i2 are ’1’ at time t0, the neuron n1 has
been in resting state accumulates these inputs and emits a
spike when they reach the threshold (assuming threshold of
n1 is two). From the time emitting a spike to entering into
refractory period (i.e., ts), the output becomes logical ’1’
(Fig. 2a). Following emitting a spike, neuron n1 enters into
refractory period and remains unresponsive to the inputs until
it reaches resting state, once again. From the time entering
into refractory period to reaching the resting state (i.e., tr),
the output becomes logical ’0’ (Fig. 2b). Although we do not
impose any particular value, the duration of ts and tr can be
used as a knob in the design process of SNNs for functions
to be implemented. Assessment of under which constraints
and circumstances different ts and tr values provide better
design alternatives is open question and left as a future work.

C. Neuron Behavior as Inputs Change as a Function of Time
To demonstrate functional multiplexing over time, we need

to show that a neuron has a distinct behavior as: i) internal
state changes while inputs remain the same, and ii) internal
state changes along with the inputs (as a function of time).
We illustrate a scenario for both (i) and (ii), below.

Fig. 3. Neurons’ responses differ as both internal states and inputs change
over time (from t0 to t2; tc represents current time). A set of responsive
neurons changes over time as some of them get into refractory period,
illustrating a possibility of functional multiplexing. Colors represent the
following. Green: spiking; yellow: resting, not reached threshold; white:
resting; red: refractory period.

In Fig. 3, there are four spiking neurons – from n1 to
n4 with a threshold of two – that are connected to four
distinct inputs (i1 to i4). Initially, all neurons are in resting
state. When the inputs are set to be {1, 1, 0, 0} at time
t0, neurons n1 and n2 reach the threshold, so they emit
spikes (i.e., the output for both are logical ’1’). On the
other hand, since neuron n3 has received input of logical
’1’ only from input i2, it could not reach the threshold; so
it remains silent (i.e., output logical ’0’). Neuron n4 has
received no input, so it also remains silent in resting state.
After neurons n1 and n2 spike, they go into refractory period
at time t1, in which their output becomes logical ’0’. Notice
that both inputs i1 and i2 remain {1, 1}, but they cannot
let neurons n1 and n2 to spike, since they are in refractory
period. Virtually, these neurons disappear from the network,
and so cannot contribute to the computation (or function)
to be performed during this period, while the rest of the
network (i.e., neurons n3, and n4) remain responsive to the
changes to inputs. While the neurons n1 and n2 are still in
refractory period, the input i3 changes from logical ’0’ to ’1’
(at time tc where t1 < tc < t2). By this change, neuron n3

reaches the threshold and emit a spike (i.e., output logical
’1’). Although, neuron n4 receives an input of logical ’1’
from i3, it remains silent in resting state, as it couldn’t reach
the threshold. Once again, notice that with the input change
in place, both neurons n1 and n2 remain unresponsive due to
being in refractory period (although they could have spiked



if they were in resting state). In short, the internal states of
the neurons dictates how to react the changing inputs that
can be exploited as functional multiplexing (i.e., the given
network could be used to realize a particular function from
time t0 to t1; and other function from time t1 to t2, as the
responsive neurons of the network changes over time).

In the following, we show an SNN that employs functional
multiplexing to realize both XOR and NAND.

D. Case Study: Multiplexing for XOR and NAND

In Fig. 4, n1, n2, n5 and n6 are inhibitory neurons,
whereas n3, n4 and n7 are excitatory neurons. Neurons n5

and n6 have threshold of two, while the rest of the neurons
have threshold of one (thresholds are indicated on top of
each neuron). There are two controlled inputs (A and B)
changing over time, and a constant input that always provide
logical ’1’ (at anticipated time). The illustrated network can
act as XOR or NAND at distinct time periods. The logic to
be realized at a given time depends on the current internal
states of the neurons (i.e., which neurons are in refractory
period, and which are in resting state – which are determined
by the recent values of A and B).

(a) A=0; B=0 (b) A=0; B=1

(c) A=1; B=0 (d) A=1; B=1

Fig. 4. A network acts as XOR and NAND (except when A=B=0, in which
case network acts as XOR, initially) when all neurons are in resting state.
Color code is the same as in Fig. 3, with an addition of gray: inhibited.

Both NAND and XOR generates logical ’1’, if any one of
the inputs is 1 (but not both: A=1 & B=0, or A=0 & B=1).
Similarly, both NAND and XOR generates logical ’0’ if both
inputs are 1 (i.e., A=B=1). However, if both inputs are ’0’
(i.e., A=B=0), then NAND would generate ’1’, whereas XOR
would generate ’0’. Now, assuming all the neurons are in
resting state initially, the network would behave as both XOR
or NAND, unless the inputs A and B are ’0’ (if both A and
B are ’0’, then network acts as XOR, initially). Specifically,
let us consider when both inputs are 0 to demonstrate the
network acts as XOR, but not NAND when all the neurons
are in resting state. In Fig. 5(a), excitatory neurons n3 and
n4 would spike, which are connected to inhibitory neuron n5

that would spike, as well (since it would reach the threshold).

Then, neuron n5 would inhibit neuron n7. Although neuron
n7 has input of logical ’1’, it cannot spike due to inhibition
imposed by neuron n5, so the output would be logical ’0’,
confirming to XOR behavior (when both inputs are ’0’).
For all other input combinations (i.e., A=0, B=1; A=1, B=0;
A=B=1), the given network would confirm to both XOR and
NAND, when all the neurons are in resting state initially (as
shown in Fig. 4b–d).

(a) network acts as XOR at
tn < tc < (tn + ts) where
tn is the time n5 emits a spike

(b) network acts as NAND, as neurons
n3, n4, and n5 are in refractory period
during (tn+ts) ≤ tc < (tn+ts+tr)

Fig. 5. A network acts as NAND during the neurons n3, n4, and n5 are
in refractory period upon acting as XOR, when both inputs A and B are
’0’. Color code is the same as in Fig. 4.

After the neurons n3, n4, and n5 spike, they would be in
refractory period for tr amount of time. During this period of
time, the network would behave as NAND gate, as illustrated
in Fig. 5 when both inputs remain the same (i.e., A=B=0).
Particularly, since the inhibitory neuron n5 (and its connected
neurons n3 and n4) is in refractory period, it cannot inhibit
the neuron n7, thus neuron n7 spikes, confirming to NAND
(when both inputs are ’0’, the output becomes ’1’).

While this case study demonstrates the feasibility of
exploiting refractory period for XOR and NAND in SNNs;
we believe that exploitation of refractory period can easily
be extended to more complex functions, allowing to realize
them without adding separate building blocks or resources
(i.e., more functionality with less number of neurons – this
would translate into area, power and likely performance
improvements). For the given XOR and NAND study, it
would require a total of 10 spiking neurons to implement
them, separately (4 inhibitory and 4 excitatory neurons
for XOR, and single inhibitory and excitatory neurons for
NAND). However, with functional multiplexing by exploit-
ing refractory period of neurons, both XOR and NAND can
be realized within the same network of 7 spiking neurons (4
inhibitory and 3 excitatory neurons, as shown in Fig. 5).

Considering the constraints of robotics applications in
terms of area, power and performance, SNNs appears to be
an attractive path to pursue for enabling real-time interaction
and learning. While conventional SNNs do not model the
refractory period, we argue that modeling and exploiting
refractory period would further open up a path for improved
efficiency and performance in these domains. Particularly,
functional multiplexing (as discussed above) and inherent
short-term memory feature of refractory period (as discussed
in the next section) are two directions that can be pursued.



III. SHORT-TERM MEMORY

As mentioned earlier, a spiking neuron can be in one of
the states at any given time: i) resting state, ii) spiking, and
iii) refractory period. Particularly, the existence of refractory
period gives an inherent short-term memory capability to
a neuron. A neuron can be in refractory period only if it
recently spiked (i.e., (tx+ ts) ≤ tc < (tx+ ts+ tr) where tx
is the time a neuron spiked most recently, ts is the time spent
in spiking state, tc is current time, and tr is the length of
refractory period). In a sense, a neuron keeps a short history
of its recent activity (for tr amount of time). This can be ex-
ploited as short-term memory which can have extended uses
and provide flexibility in low-power robotics applications,
particularly for building efficient learning methods. Particular
demonstration of how such a short-term memory (due to
refractory period) can be exploited in SNN-based robotics
applications is left for an extended paper. In our group, we
are currently investigating in exploiting refractory period in
recurrent spiking neural networks that can play a key role
in processing and acting on time-series sensory signals (e.g.,
audio, streaming video), and manipulation of sensory guided
movement (e.g., reaching, grasping).

Without loss of generality, Fig. 6 illustrates how the
internal states of a neuron (in particular, refractory period)
can be exploited to form a short-term memory. There are
three neurons, n1, n2, and n3 whose interactions would be
used to demonstrate the concept. At time t1, neuron n1 spikes
which also causes neuron n2 to spike. Following a spike, n2

enters a refractory period at time t1 + ts; and it remains in
refractory period for tr amount of time. During this period,
neuron n3 spikes to probe the short-term memory of n2.
If n2 responds to input coming from n3, then this means
that n2 is not in refractory period; otherwise, if it remains
unresponsive to the probe of n3, then it means that n2 is in
refractory period. When n3 probes n2 at the time tc where
(t1+ ts) ≤ tc < (t1+ ts+ tr), the n2 does not spike since it
is in refractory period, and that can be considered as a logical
’1’ being kept in short-term memory of n2. The content
of the short-term memory will be lost once n2 reaches the
resting state again (at time t1 + ts + tr).

Likewise, if we look at the state of neuron n2 at time tN ,
we see that it is in resting state (no spike emitted from n1,
so there is no input for n2 to make it spike at that moment).
Waiting enough time for n2 to change its internal state in
case there could be an input from n1 (which is not the case
this time), neuron n3 spikes to probe n2’s short-term memory
at time tc where (tN + ts) ≤ tc < (tN + ts+ tr). This time,
n2 responds to input from n3 since it was in resting state,
thus emit a spike, which can be considered as a logical ’0’
being kept in short-term memory of n2.

Once again, the retention of the current state (and thus
its corresponding logical value) is restricted by the duration
of refractory period (i.e., tr). Although it is possible to
build a complex SNNs that can retain the value longer (via

feedback looped network), or by extending the refractory
period (which may have side-effects on performance of the
computation carried over the network), we did not explore
them here. Rather, we focus on the basic principles and
provide a proof-of-concept example, in this paper.

Fig. 6. Illustration of how refractory period serves as short-term memory.
Neuron n2 does not respond to probing input (from n3) if it spiked recently
(i.e., in refractory period) – this can be regarded as logical ’1’ being kept in
short-term memory. However, neuron n2 responds to probing input (from
n3) and spikes, if it was in resting state, recently – this can be regarded as
logical ’0’ being kept in short-term memory.

IV. RELATED WORK
The refractory period has been exploited in the context

of associative memory, in which the network activity is a
proxy to memory capacity (higher the activity means larger
the capacity)[3]. When the neurons are in refractory period,
the network activity reduces and makes the memory capacity
smaller. However, in return, the recall ability of the network
increases. The authors have modeled the refractory period
and played with the threshold to improve the recall rate of
the associative memories in neural networks. In contrast, we
exploit refractory period itself as a way to form a memory
(rather than adjusting a recall rate), as opposed to whole
network acting as aassociative memory. We also exploit
refractory period to support functional multiplexing in SNNs,
which is the first attempt of its kind, to the best of our
knowledge.

V. CONCLUSION
We propose two novel ways to exploit the refractory

period of neurons in SNNs. First, it can be exploited to
enable functional multiplexing (that is the SNN acts as
different network at distinct time periods, depending on
which neurons are in refractory period), and second, it can
be used to build a short-term memory (based on recent
spike activity, i.e., whether a neuron has spiked or not, in
the recent past). Both functional multiplexing and short-
term memory (based on refractory period) would be key to
build efficient learning, sensory information processing, and
motion planing in robotics applications (in terms of area,
power and performance).

REFERENCES

[1] H. Paugam-Moisy and S. M. Bohte, “Computing with spiking neuron
networks,” in Handbook of Natural Computing, 2012.

[2] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas
immanent in nervous activity,” The bulletin of mathematical biophysics,
vol. 5, pp. 115–133, Dec. 1943.

[3] M. Oda and H. Miyajima, “Autoassociative memory using refractory
period of neurons and its on-line learning,” in ICECS 2001. 8th IEEE
International Conference on Electronics, Circuits and Systems (Cat.
No.01EX483), vol. 2, pp. 623–626 vol.2, Sep. 2001.


